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Abstract

FT-IR spectra have been investigated for their ability to distinguish compounds which are chemically diverse and
to produce clusters of compounds which makes sense chemically. Principal component analysis (PCA) was applied to
the analysis of a small database of FT-IR spectra. The effect of the data pretreatment step of log transformation on
spectral data pattern was also visualized by using PCA plots. The method of sequential projection pursuit (SPP) was
applied to detect inhomogeneities in the data. Finally, cluster analysis of these spectra, depending on unweighted
pair-group average linkage, was carried out. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The field of chemical diversity has become fash-
ionable in drug discovery research with the devel-
opment of high-throughput screening and
combinatorial chemistry. A major step in the lead
generation phase is the ability to quantify the
chemical similarity between compounds. Al-
though there is no general agreement on how to
quantify chemical diversity, much of the early
work on similarity searching was concerned with
making a number of attempts to asses it [1–4].
Numerous distances and coefficients have been
proposed for diversity studies. Among them, the

Tanimoto coefficient has demonstrated its value
in measuring intermolecular similarity for binary
fingerprints and the Euclidean distance for molec-
ular vectors. For the assessment of spectral resem-
blance, correlation coefficients are often used,
because they provide simple and obvious solu-
tions [5,24]. However, caution must be exercised
in predicting the degree of structural similarity
between different substances. The smaller the dis-
tance measure between the objects, the more valid
the prediction of ‘similarity’ [6]. The choice of the
clustering method when classifying molecular
components, which are characterized by a given
set of fragment-based fingerprints or structural
physicochemical properties, has been shown to be
crucial for the effectiveness of separation of simi-
lar from diverse compounds [2]. Various methods,
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that can be used to cluster a data set, have been
described in the literature but for several real data
sets, studies have indicated that hierarchical ag-
glomerative procedures perform best at separating
active from inactive molecules [8–10,21].

Multivariate exploratory methods have been
successfully applied in pharmaceutical drug dis-
covery research for diversity studies on large num-
bers of compounds with known chemical
structure. However, if samples are complex mix-
tures containing different substances with un-
known chemical structures, as in the majority of
natural product collections, these techniques are
inapplicable and so the knowledge of the diversity
of these samples is severely reduced. Conse-
quently, each molecule must be represented by
other descriptors, e.g. experimental parameters

which must be easy to measure due to the large
number of compounds. Of the various forms of
spectroscopy from which the organic chemist
derives structural information, mid infrared spec-
troscopy presents the greatest challenge for iden-
tification and structure evaluation of compounds
and is thus a likely candidate [11]. Many chemo-
metrical approaches (e.g. PCA) have been shown
to be useful in mass spectrometry to reveal spec-
tra-structure relationships and to discriminate be-
tween classes of chemical compounds with
different substructures [28]. Mid infrared spec-
troscopy also produces multivariate data. There-
fore, the use of multivariate exploratory methods
should, as in mass spectrometry, show promise
for the classification and interpretation of infrared
spectral data, following the assumptions that
structurally similar compounds should have simi-
lar spectra [7,12,13].

It is the aim of this preliminary study to apply
chemometric techniques as principal component
analysis (PCA) and cluster analysis to a small
data set of 61 synthetic substances in order to
elucidate whether FT-IR spectroscopic data could
be used for characterizing similarity/diversity of
chemical compounds.

2. Theory

2.1. Daylight structural fingerprints

Daylight hashed fingerprints are one of the
most commonly used two-dimensional molecular
descriptors. They encode molecules in terms of
chemical substructures and therefore consist of a
large amount of relevant structural information.
The molecule is broken down into short, con-
nected paths of atoms and those chemical patterns
are described with bits strung together in a binary
bit string. Each bit that is set to one (1) describes
the occurrence of a certain fragment, whereas a
zero indicates its absence [25–27].

2.2. Spectral features

An important problem with multivariate data
resulting from infrared spectroscopy is that IR

Table 1
List of synthetic substances

31 acebutolol1 maltose
2 glucose 32 pindolol
3 saccharin 33 oxprenolol

34 sotalol4 penicillin
35 propranolol5 tetracyclin
36 nadolol6 L-aspartic acid

7 L- asparagin 37 atenolol
8 D-leucin 38 alprenolol

39 metoprolol9 L-isoleucin
10 DL-phenylalanin 40 betaxolol
11 L-tyrosin 41 prenalterol
12 amphetamin 42 4-benzylphenol
13 ephedrin 43 menthol
14 dopamin 44 camphor
15 serotonin 45 guanidin
16 histamin 46 caffeine
17 melatonin 47 pentoxifyllin

48 H-purin18 mexiletin
49 lysergide19 fenfluramin
50 strychnin20 oxeladin
51 codein21 procain

22 lidocain 52 heroin
53 morphin23 digitoxigenin

24 digitoxin 54 cocaine
25 testosteron 55 nicotine
26 androsteron 56 lobelin
27 progesteron 57 amiodaron
28 estradiol 58 miconazole

59 nicardipine29 cholesterol
30 terbutalin 60 sulfapyridin

61 lormetazepam
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Fig. 1. (a) Score plot from the principal component analysis (PCA) of the raw infrared spectral features, showing PC2 against PC1.
For the numbering of the compounds, see Table 1. (b) Score plot from the PCA of the raw infrared spectral features, showing PC3
against PC1. Notation as in (a). (c) Score plot from the PCA of the raw infrared spectral features, showing PC4 against PC1. The
numbering of the compounds is the same as in (b). (d) Score plot from the PCA of the raw infrared spectral features, showing PC3
against PC2. The numbering of the compounds is the same as in (c).

peaks caused by the same substructure are not
always situated at the same single real number on
the wavenumber scale. This fuzziness of IR peak
position must be taken into account when applying
exploratory methods. One possibility is to specify
wavenumber intervals for IR band positions and
to calculate spectral features for each predefined
interval [13–15]. The selection of appropriate
wavenumber intervals is crucial in feature genera-
tion.

Spectral features are vectors that represent as

much as possible the essential information con-
tained in the infrared spectrum of a compound.
Feature INT(y1, y2) is the intensity of a spectral
absorption. If the difference between the maxi-
mum and minimum absorption in an interval is
B0.005, i.e. if there is no increasing infrared
absorption, then the input unit corresponding to
that interval is given a zero value. If there is an
increasing absorption in a frequency interval, then
an input value between 0 and 1 in proportion to
the strength of the increase was given according to:
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INT(y1, y2)=
!Amax

0
(1)

with Amaxbeing the maximum absorption in this
predetermined interval [16].

2.3. Data

The study was carried out by using a small data
set of 61 synthetic substances. The structure of all
substances is known. They are listed in Table 1
and were used in an analogue study about assess-
ing similarity/diversity by mass spectrometry [28].

The choice of the small data set is justified by
their differences in structure and pharmacological
activity: a relatively large class of highly similar
compounds, e.g. the b-blockers, some smaller
more vague groups of structurally similar sub-
stances and furthermore, some compounds picked
at random.

Fourier transform infrared spectra (FT-IR)
were recorded with the use of a Perkin Elmer
FT-IR Spectrum 1000 spectrometer operating at 4
cm−1 resolution and measured from 4000 to 400
cm−1 at a sampling interval of 1 cm−1. Before
starting a measurement a background spectrum

Fig. 2. (a) Loading plot from the principal component analysis (PCA) of the raw infrared spectral features. The first loading vector
is plotted vs. infrared spectral features. (b) Loading plot from the PCA of the raw infrared spectral features, with the second loading
vector plotted against infrared spectral features. (c) Loading plot from the PCA of the raw infrared spectral features, with the third
loading vector plotted against infrared spectral features. (d) Loading plot from the PCA of the raw infrared spectral features, with
the fourth loading vector plotted against infrared spectral features.
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Fig. 3. (a) Score plot from the principal component analysis (PCA) of the log transformed infrared spectral features, with PC2
plotted against PC1. For the numbering of the compounds, see Table 1. (b) Score plot from the PCA of the log transformed infrared
spectral features, showing PC3 against PC1. Notation as in (a). (c) Score plot from the PCA of the log transformed infrared spectral
features, showing PC4 against PC1. Notation as in (b). (d) Score plot from the PCA of the log transformed infrared spectral
features, showing PC3 against PC2. Notation as in (c).

was recorded and each spectrum was automatically
averaged over 16 scans. Solids were examined as
dispersions in compressed KBr discs, liquids as films
on NaCl plates. The full-curve IR-spectra were then
converted from hexadecimal to ASCII format and
were subsequently truncated at 3700 cm−1. The
absorbance values were normalized to the range
0–1. For the generation of spectral features, the
latter spectra, starting at 3700 cm−1 and ending at
about 400 cm−1, were divided into 245 intervals
with the widths continuously increasing with grow-
ing wavenumber as described by Robb and Munk
[15]. Features have been calculated by applying Eq.

(1) to each interval. A data matrix whose rows are
the 61 samples and whose columns are the 245
variables (wavenumber intervals) was built. The
elements of this matrix are the INT features in each
of the predefined intervals for one of the substances.

The 2D structural fingerprints for the same
substances were obtained using the Daylight Clus-
tering Software.

The data matrixes were then imported into
Matlab version 4.2 (The Mathworks, v4.2c.1) to
perform PCA and sequential projection pursuit
(SPP) so that exploratory data analysis could be
conducted.
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2.4. Chemometric analysis of the FT-IR spectral
data

2.4.1. Pre-processing of the FT-IR spectral data
Prior to the actual data analysis the original

data is often transformed to eliminate the
differences in variable dimensions [10]. An often
applied transform is the log transform. This
transform has the advantage that differences
in variation are minimized so that variables
will have equal importance in the analysis
[17,18,22].

2.4.2. PCA
PCA was used, as the multivariate method, to

reduce the size of the space of the variables and
visually represent a clustering of the substances
[7,19]. Infrared spectral features with and without
a log transform pretreatment were analyzed.

2.4.3. SPP
SPP is a method that reveals more easily infor-

mation about inhomogeneities in the data than
PCA [23]. The method is applied on the raw and
log transformed infrared spectral features.

Fig. 4. (a) Principal component analysis (PCA) loading plot of the log transformed infrared spectral features, showing the first
loading vector against spectral features. (b) PCA loading plot of the log transformed infrared spectral features, with the second
loading vector versus spectral features. (c) PCA loading plot of the log transformed infrared spectral features, with the third loading
vector plotted against spectral features. (d) PCA loading plot of the log transformed infrared spectral features, with the fourth
loading vector plotted against spectral features.
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Fig. 5. Score plot from the sequential projection pursuit (SPP)
of the raw infrared spectral features, showing PP2 against PP1.
For the numbering of the compounds, see Table 1.

2.5. Comparison of classifications

Many methods for quantitatively defining the
similarity between two different clusterings of the
same set of objects have been proposed. In this
study Wallace’s measure sw (1983) was used for
comparing two hierarchies of the same finite set of
objects. The measure is based on a (k× l) contin-
gency table for two different clusterings H (k
groups) and G (l groups) of a same set S of n
objects.

Partition G

g2 · · · Sums· · · gkGroup g1

n1.n1k· · ·· · ·n12n11h1

· · ·· · ·n22 n2kn21h2 n2.

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · ·· · · · · ·· · · · · ·

hl nl1 nl2 · · · · · · nlk nl.

· · ·Sums nn.2n.1 · · · n.k

Fig. 6. Score plot from the sequential projection pursuit (SPP)
of the log transformed infrared spectral features, showing PP2
against PP1. For the numbering of the compounds, see Table
1.

Fig. 7. Score plot from the sequential projection pursuit (SPP)
of the log transformed infrared spectral features (transmis-
sions), showing PP2 against PP1. For the numbering of the
compounds, see Table 1.

2.4.4. Cluster analysis
Clustering is the process of subdividing a set of

entities into subsets in which the members are
similar to each other, but different from members
of other subsets [3]. A hierarchical cluster analysis
of samples was performed using the 245 infrared
spectral features. The correlation coefficient was
used as a similarity measurement and the un-
weighted pair-group average method as an amal-
gamation rule. The results are displayed
graphically as a dendrogram [10,20].
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Fig. 8. Hierarchical upgma-clustering of the raw infrared spectral features.
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This similarity measure gives the probability
that two objects that are picked at random are
placed in the same group in G and in the same
group in H. However, the measure is not symmet-
ric, so it should be used only in cases where one
partition can be considered to be the correct one.

The measure proposed by Fowlkes and Mal-
lows (1983) is an alternative which avoids this
asymmetry.

sFM(G, H)=
sw(G, H)sw(H, G)

This measure, like Wallace’s measure, ranges
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from 0 when there is no similarity at all to 1 when
the two partitions are identical.

3. Results and discussion

3.1. PCA

3.1.1. PCA of the raw infrared spectral features
To obtain an overview of the dominating pat-

terns and major trends in the data set, a PCA was

first performed on the raw spectral features. The
first four principal components (PCs) explained
80.1% of the total variance, of which 69.1% ex-
plained by PC1, 4.9% by PC2, 3.7% by PC3 and
2.5% by PC4. To visualize the trends of the data,
the scores for samples and the loadings for vari-
ables were represented in the space of the four
PCs obtained from PCA. The score plot of PC1
against PC2, PC3 and PC4 and PC2 against PC3
is shown in Fig. 1a–d, respectively. The corre-
sponding loadings are plotted in Fig. 2(a–d).

Fig. 9. Hierarchical upgma-clustering of the log transformed infrared spectral features.
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Fig. 10. Hierarchical upgma-clustering of the 2D Daylight structural fingerprints.

The best results are obtained in the score plot
of PC2–PC3 (Fig. 1d). One can detect a clustering
due to chemical similarity, most pronounced for
the amino-acids (1) that are grouped together in
the left part of the plot, the steroids (2) that are
situated in the upper right region and the b-block-
ers (3) that appear in the lower part of the same
plot. Also, maltose and glucose, as well as
lidocain and procain are closely clustered in the
central region.

The largest variation (Figs. 1 and 2) within the
data set of 61 synthetic substances is explained

along PC1 by the overall IR-absorption of the
compounds investigated since all loadings are pos-
itive. The more IR peaks of high intensity a
spectrum has, the higher the overall absorption of
the substance. Going from left to right in Fig. 1a,
the order of total absorption intensity goes from
small to high. PC2 reflects the difference between
those substances that are mainly characterized by
features 14–20, corresponding to the wavelength
region 3450–3300 cm−1, which can be attributed
to the O–H stretching vibrations of an alcohol
and substances that have a characteristic N–H
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bending absorption, occurring in the region
1630–1500 cm−1 (feature 124–132). This is seen
in the loading plot of Fig. 2b where features
14–20 are at the top and features 124–134 at the
bottom of the plot. Compounds with a sharp
absorption around 1650 cm−1, due to the C�O
stretching mode of an amide or the C�N stretch-
ing of imines are situated in the positive direction
of PC3, while compounds characterized by intense

C–H stretching bands that occur below 3000
cm−1 lie in the negative direction. Some variables
that we have already encountered seem also to be
important for the fourth PC. A very intense ab-
sorption at around 1700 cm−1, indicative of the
C�O stretching mode of carbonyls, and between
1100 and 1000 cm−1, due to C–O stretching
vibrations of alcohols and esters is characteristic
for compounds situated in the positive direction
of PC4, like for example compound no. 51, 52, 54.
Substances characterized by an intense band oc-
curring at around 1600 cm−1, due to N–H bend-
ing vibrations and above 3000 cm−1, indicative of
N–H stretching absorptions, as for example com-
pound no. 45, 49 lie in the negative direction of
PC4.

PCA-mapping shows that raw mid-infrared
spectra indeed contain at least some information
about structure since clusters of similar objects
are formed in spectral data space.

3.1.2. PCA of the log transformed infrared
spectral features

A PCA-analysis was also performed on the log
transformed infrared spectral features and the
resulting PCA-plots, in which the first four PCs
accounted for 89.3% of the total variation in the
data, are shown in Fig. 3a–d. The first PC de-
scribed 84.5% of the variance and the second,
third and fourth PC 2.2, 1.5 and 1.1%, respec-
tively. Fig. 3a–d show the score plot of PC2
against PC1, PC3 against PC1, PC4 against PC1
and PC3 against PC2 respectively. The corre-
sponding loadings are plotted in Fig. 4a–d,
respectively.

The best discriminant plot is shown in Fig. 3d,
in which three well-separated groups appear, one
of them containing all steroid cases and the other
two containing the b-blockers and amino-acid
samples. Also, both sugars, maltose and glucose,
lie closely clustered in the top region.

Looking at the score plots and loading plots
(Figs. 3 and 4) shows that PC1 again detects the
overall IR-absorption as being the main feature in
all the spectra investigated, since substances with
very little IR absorption appear in the right part
of Fig. 3a, such as, for instance compound no. 27,
45, 55 while substances that strongly absorb are inFig. 11. Expert’s classification of the set of 61 substances.
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Table 2
1: comparison with four largest clusters of the respective clusterings; 2: comparison with six largest clusters of the clusterings, based
on log transformed IR spectral features and with five largest clusters of the clustering, based on raw features and Daylight
fingerprints

Expert’s/log INT featuresExpert’s/raw INT features Expert’s/Daylight fingerprints

0.43431. 0.41970.4458
2. 0.3918 0.4160 0.4390

Table 3
1: comparison of four largest clusters of the respective clusterings; 2: comparison of five largest clusters of the clustering, based on
raw features with six largest clusters of clustering based on log transformed features; 3: comparison of five largest clusters of
clustering based on Daylight fingerprints with six largest clusters of the resp.clusterings, based on INT features

Raw INT features/log INT features Raw INT features/Daylight fingerprints log INT features/Daylight fingerprints

0.56991. 0.59460.6030
0.39212.

3. 0.4306 0.6310

the left part, for example compound no. 6. The
second PC differentiates between substances with
characteristic broad absorption bands in the range
3150–2500 cm−1, indicative of the C–H stretch-
ing mode and compounds that have a strong
absorption between 1820 and 1660 cm−1, due to
C�O stretching vibrations. In PC3, the com-
pounds that show a strong OH-stretching absorp-
tion are separated from the rest. This is also seen
in Fig. 4c where the variables related to this
wavenumber interval (features 13–15) have a high
positive loading. The fourth PC explains almost
the same information as described by PC4 for the
raw infrared spectral features.

PCA-analysis of IR-spectral features after a
logarithmic transformation pretreatment shows
the same characteristic features for assessing simi-
larity as raw IR spectral features and therefore
this transform does not seem necessary for good
results.

3.2. SPP

3.2.1. SPP on raw infrared spectral features
The SPP-results obtained on the raw infrared

spectral features are shown in the score plot of
PP1–PP2 (Fig. 5). Compared with PCA, SPP fails
to separate the different groups of similar com-

pounds. However, SPP is not meant to find
groups in the data, but to detect inhomogeneities.
In Fig. 5, one outlier is found namely compound
no. 6 (L-aspartic acid) in the positive direction of
PP1. With PCA, this outlying object in the data
can also be distinguished on PC2, although not so
clearly (Fig. 1a). This substance may be regarded
as an inhomogeneity in the data, probably due to
its intense broad N–H bending absorption with
respect to the other compounds in the data set.
Along PP2, one can observe two outliers, com-
pounds no. 44 (camphor) and 49 (lysergide).
These objects can not be observed as outliers in
the resulting PCA-plots (Fig. 1), with the excep-
tion of compound No. 49 that can slightly be
detected in the negative direction of PC4. This
substance is marked by a broad high intensity
N–H stretching absorption and may be regarded
as an inhomogeneity in the data.

The results show that SPP can be regarded as
an interesting tool to find outliers in the data set
that probably influence the clustering tendency in
PCA.

3.2.2. SPP on log transformed infrared spectral
features

After a logarithmic transformation of the in-
frared spectral features, one can detect a layered
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structure of two elongated clusters in the score
plot of PP1–PP2 (Fig. 6). The bottom cluster
contains all those substances that absorb very
little due to many features set to zero, the others
appear in the upper cluster. Those zero values
were replaced by a small number that approaches
zero, i.e. 0.0001. Since a logarithmic transforma-
tion converts them into a highly negative number,
the substances in the bottom cluster are character-
ized by a high negative value. The group of
b-blockers can slightly be identified in the upper
right part of Fig. 6. It shows that SPP can be used
to find out such artefacts in the data that can not
be detected with PCA and might influence the
results in PCA. Therefore, a logarithmic transfor-
mation does not seem to be the best approach in
IR-spectroscopy. One can avoid the problem by
using transmissions instead of absorptions. This is
shown in the plot of Fig. 7. The layered effect
disappears and one can observe the inverse of the
plot in Fig. 5.

One outlier (compound no. 6) can be identified
in the direction of PP1. This object is also clearly
outlying along PC1 (Fig. 3a) and therefore can be
regarded as an inhomogeneity in the data, proba-
bly due to its strong IR-absorption with respect to
the other compounds in the data. Again, the
results show that SPP indeed detects outlying
objects in the data better than PCA does.

Since no extra information is supplied after a
logarithmic transformation of the data, it seems
better to work with raw spectral features instead
of log transformed spectral features.

3.3. Qualitati6e comparison of upgma-clusterings

Hierarchical cluster analysis, based on un-
weighted pair-group average linkage and the cor-
relation coefficient, was also used for data
classification and the resulting dendrograms for
raw and log transformed infrared spectral features
can be observed in Figs. 8 and 9, respectively. An
examination of both hierarchical upgma-cluster-
ings clearly shows that smaller clusters of similar
structures are nested within larger clusters con-
taining progressively more diverse structures. At a
cut-off value of 90.75–0.77, both Figs. 8 and 9
present the formation of two main clusters and

some smaller ones. The first main cluster includes
most b-blockers in the classification based on raw
infrared spectral features. Most amino-acids are
found in one subgroup of this respective cluster.
The second main cluster of chemical structures is
considerably more heterogeneous, but consists of
smaller, more homogeneous groups of similar
compounds, for example maltose and glucose, as
well as morphine and lysergide are linked together
in one smaller subcluster. The steroids appear
more dispersed over the tree.

In the classification, based on log transformed
spectral features, most b-blockers are found to-
gether in the first main cluster. Also, most amino-
acids are contained in a small subgroup of this
cluster. Almost all steroids are located near each
other in one subgroup of the other main cluster,
as well as maltose and glucose that are linked
together in a smaller subgroup of this cluster.

The upgma-classification of the Daylight struc-
tural fingerprints is presented in Fig. 10. The
Tanimoto coefficient was used as similarity mea-
sure. In the resulting tree-structure, some clusters
of very similar compounds can be observed, for
example, most amino-acids (L-aspartic acid, L-as-
paragin, DL-Leucin, L-isoleucin) are included in
one cluster, as well as most steroids. Also, the
group of b-blockers is found as such in one
cluster. Another example is given by the alkaloids,
codein, morphin and heroin, as well as melatonin
and serotonin, camphor and menthol and the
purine derivatives, caffein, pentoxifyllin and purin
that are linked together in the tree-structure.

3.4. Quantitati6e comparison of upgma-clusterings

The measure of Wallace is applied to obtain
more quantitative information about the similar-
ity between two different classifications of the
same set of compounds. The upgma-clusterings
have been quantitatively compared between them
and with an expert’s classification of the same set
of objects, according to known structure and
pharmacological activity. In Fig. 11 the expert’s
classification, composed of six groups, is pre-
sented. It has to be stressed that other classifica-
tions might be proposed by other experts due to
the selection of the set of compounds, some of
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which are quite different from one another. From
the comparison of the different upgma-clusterings
with the expert’s classification, no marked differ-
ences can be noted between the different compari-
sons (Table 2): all three upgma-classifications
seem to compare equally with the classification,
based on expert judgement. However, the classifi-
cation, based on Daylight structural fingerprints
produces the best results.

The results of the quantitative comparison of
the different upgma-clusterings between them are
shown in Table 3. From this comparative study, it
seems that the different classifications are quite
similar to each other. However, comparing the
five largest clusters of the clustering, based on
Daylight fingerprints with the six largest clusters
of the clusterings, based on raw and log trans-
formed spectral features, the classification of the
log transformed spectral features compares most
with the classification, based on Daylight struc-
tural fingerprints.

From the results, it seems that the classification
of infrared spectral features is very similar to the
classification based on structural characteristics.
Therefore, it seems that mid infrared spectra can
provide enough characteristic information to
group compounds into structurally similar classes.
Also, a logarithmic transformation pretreatment
does not seem necessary for good clustering.

4. Conclusion

In this preliminary work, an evaluation whether
FT-IR spectroscopy provides enough structural
information for determining the molecular simi-
larity/diversity of chemical compounds is pre-
sented. A comparative study was carried out
between an upgma-clustering, based on Daylight
structural fingerprints or infrared spectral features
and both results were compared with an expert’s
classification of the same set of compounds. From
our results, it seems that the upgma-clusterings
based on Daylight structural fingerprints and IR
spectral features are of similar quality and there-
fore it seems one does not loose much informa-
tion using spectral characteristics instead of
structure. However, a logarithmic transformation

of the data does not seem necessary for good
clustering.
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